Revision Session#

Revenue Function of a Firm#

\[ \Pi = pf (zeH)-wH \]

1): Diff w.r.t w

\[\begin{split} \frac{ d\Pi }{dw} = pf'(z E(w) H)*zE'(w)H-H= 0 \\ = pf'(zE(w)H) zE'(w)=1 \end{split}\]

2): Diff w.r.t H

\[\begin{split} \frac{ d\Pi }{dw} = pf'(zE(w)H)*zE(w)-w = 0 \\ = pf'(zE(w)H)*zE(w)= w \end{split}\]

Divide 1) by 2)

\[\begin{split} \frac{ pf'(zE(w)H) zE'(w) }{pf'(zE(w)H) zE(w)} = \frac{ 1 }{w} \\ \frac{ E'(w) }{E(w)} = \frac{ 1 }{w} \\ \frac{ w*E'(w) }{E(w)} = 1 \gets \text{ Solow Condition} \\ \end{split}\]

Ableiten von E(w) mit v=outside option und a=elasticity

\[ \begin{align}\begin{aligned}\begin{split} E(w) = ({\frac{ w-v }{v}})^\alpha \\ E'(w) = \alpha (\frac{ w-v }{v})^{\alpha-1} * \frac{ d }{dw}(\frac{ w }{v}-1) = 0 \\\end{split}\\\begin{split}E'(w) = \alpha (\frac{ w-v }{v})^{\alpha-1} * \bigg( \frac{v(1)-w(0) }{v^2}\bigg) \\\end{split}\\\implies E'(w) = \alpha (\frac{ w-v }{w})^{\alpha-1} * \frac{ 1 }{v} \end{aligned}\end{align} \]

Dann

\[ \begin{align}\begin{aligned}\begin{split} \frac{ E'(w) }{E(w)} = \frac{ \alpha (\frac{ w-v }{v})^{\alpha-1} * \frac{ 1 }{v} }{({\frac{ w-v }{v}})^\alpha} \\\end{split}\\\begin{split}= \frac{ \alpha (\frac{ 1 }{v}) }{(\frac{ w-v }{w})^{\alpha-\alpha+1}} \\\end{split}\\\implies \frac{ E'(w) }{E(w)}= \frac{ \alpha }{w-v} \end{aligned}\end{align} \]

optimal wage: place in solow Condition

\[\begin{split} \frac{E'(w) }{E(w)} *w= 1 \\ \frac{ \alpha }{w-v} * w = 1 \\ \alpha w = w-v \\ v+ \alpha w = w \\ v = w-\alpha w \\ v = w (1-\alpha) \\ w^* = \frac{ v }{(1-\alpha)} \end{split}\]

Differentation Rule: (important) $\( Diff: \frac{x}{y} \to \frac{ y }{y^2} = \frac{ 1 }{y} \)$

Outside Option#

1): $\( v= w-uw+ucw \\ v = w(1-u)+ucw \\ v = w(1-u+uc) \\ v = w(1-u(1-c)) \)$

place 1) in optimal wage

\[\begin{split} w = \frac{ v }{1-\alpha} \\ w = \frac{ w(1-u(1-c)) }{1-\alpha} \\ \frac{ w }{w} = \frac{ 1-u(1-c) }{1-\alpha} \\ 1-a = 1-u(1-c) \\ u(1-c) = 1-1+\alpha \\ u^* = \frac{ \alpha }{1-c} \end{split}\]

interpret: unemployment rate depends on

  • c=replacement ratio (how high unempl. benefit is as fraction of wages)

  • alpha=elasticity

=> higher unempl. benefits => higher unempl. rate